Preimplantation mammalian embryos in culture secrete autocrine growth factors into the surrounding medium that, in turn, stimulate the development of the embryos. The full complement of these factors is unknown. Since one hallmark of embryo development is the formation of an epithelium, the trophectoderm, we tested the hypothesis that one such embryo-derived growth factor is acrogranin (epithelin/granulin precursor), a factor that possesses growth-regulatory activities principally toward epithelial cells. We found that acrogranin mRNA was expressed in preimplantation mouse embryos with the transcript levels rising to their highest point in blastocysts, coincident with the appearance of the trophectoderm. Indirect immunofluorescence confocal microscopy of preimplantation mouse embryos at different developmental stages revealed that acrogranin immunostaining was most concentrated in the trophectoderm of blastocysts. Immunoblotting and immunoprecipitation experiments demonstrated that the embryos secreted acrogranin into the surrounding medium. To determine how altering the levels of acrogranin in the culture medium surrounding the embryos might affect embryonic growth and development, acrogranin protein levels in the culture medium were decreased with a function-blocking antibody or increased by adding the purified acrogranin to the medium. In both a concentration-dependent and a reversible manner, affinity-purified anti-acrogranin antibody significantly inhibited the development of eight-cell embryos to the blastocyst stage compared to controls (no added immunoglobulin or nonspecific IgG). Furthermore, embryo cell numbers were significantly decreased in the presence of the highest concentrations of acrogranin antibody compared to control embryos. Exogenous acrogranin added to cultures of eight-cell embryos accelerated the time for the onset of cavitation, as well as stimulating the rate of blastocoel expansion and increasing the number of trophectoderm cells compared to controls. These results indicate that acrogranin can regulate the appearance of the epithelium in the developing mouse blastocyst, the growth of the trophectoderm, and/or the function of the embryonic epithelium.
Copyright 2000 Academic Press.