The functional 20-hydroxyecdysone (20E) receptor is a heterodimer of two members of the nuclear hormone receptors superfamily; the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. As most of the natural 20E-response elements are highly degenerated palindromes, we were interested in determining whether or not such asymmetric elements could dictate the defined orientation of the Usp/EcR complex. We have investigated interaction of EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) with the palindromic response element from the hsp27 gene promoter (hsp27pal). The hsp27pal half-sites contribute differently to the binding of the heterodimer components; the 5' half-site exhibits higher affinity for both DBDs than the 3' half-site. This observation, along with data demonstrating that UspDBD exhibits approximate fourfold higher affinity to the 5' half-site than EcRDBD, suggest that UspDBD locates the EcRDBD/UspDBD heterocomplex in the defined orientation (5'-UspDBD-EcRDBD-3') on the hsp27pal sequence. The binding polarity onto hsp27pal is accompanied by different contribution of the UspDBD and EcRDBD C-terminal sequences to the DNA-binding and heterocomplex formation. This is supported by finding that deletion of the C-terminal of EcRDBD region corresponding to the putative A-helix severely decreased binding of the EcRDBD to the hsp27pal. In contrast, UspDBD in which corresponding residues were deleted exhibited the same hsp27pal binding pattern as the wild type UspDBD. Additional truncation comprising the putative T-box, resulted in a reduced binding of the mutated UspDBD. This truncation however, still allowed effective EcRDBD/UspDBD heterodimer formation. Finally we demonstrated that perfect palindromes, composed of two hsp27pal 5' half-sites (or of the related sequence) contain all of the structural information necessary for the anisotropic UspDBD/EcRDBD heterocomplex formation. However, the perfect palindromes bind isolated homomeric DBDs as well as their heterocomplex with higher affinity than imperfect hsp27pal. This is the first report indicating that natural 20E response elements, which with one exception are degenerated palindromes, may act as functionally asymmetric elements in a manner similar to the action of direct repeats in vertebrates.