EB1089, a 1,25-dihydroxyvitamin D(3) analog, has been known to have potent antiproliferative properties in a variety of malignant cells in vitro and in vivo. In the present study, we analyzed the effect of EB1089 on human myeloma cell lines. EB1089 inhibited the proliferation of NCI-H929 cells and RPMI8226 cells in a dose-dependent manner among three myeloma cell lines tested. The antiproliferative effect of EB1089 on myeloma cells was related to the expression level of vitamin D receptor. To investigate the mechanism of the antiproliferative effect of EB1089, cell cycle analysis was attempted in EB1089-sensitive NCI-H929 cells. EB1089 (1 x 10(-8) M) efficiently induced G(1) arrest of the cell cycle. Analysis of G(1) regulatory proteins demonstrated that protein levels of CDK2, CDK4, cyclin D1, and cyclin A were decreased in a time-dependent manner, but not those of CDK6 and cyclin E, by EB1089. In addition, EB1089 (1 x 10(-8) M, 72 h) increased the protein level of the CDKI p27 and markedly enhanced the binding of p27 with CDK2 compared to EB1089-untreated cells. Furthermore, the activity of CDK2-associated cyclin kinase was decreased, which was accompanied by the reduction of cyclin-D1-, cyclin-E-, and cyclin-A-associated kinase activities, resulting in the hypophosphorylation of Rb protein. These results suggest that EB1089 can inhibit the proliferation of human myeloma cells, especially NCI-H929 cells, via a G(1) block in association with the induction of p27 and the reduction of CDK2 activity.
Copyright 2000 Academic Press.