Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A

Drug Metab Dispos. 2000 Feb;28(2):125-30.

Abstract

The inhibitory effects of six commonly used calcium channel blockers on three major cytochrome P-450 activities were examined and characterized in human liver microsomes. All six compounds reversibly inhibited CYP2D6 (bufuralol 1'-hydroxylation) and CYP2C9 (tolbutamide methyl hydroxylation) activities. The IC(50) values for the inhibition of CYP2D6 and CYP2C9 for nicardipine were 3 to 9 microM, whereas those for all others ranged from 14 to >150 microM. Except for nifedipine, all calcium channel blockers showed increased inhibitory potency toward CYP3A activities (testosterone 6beta-hydroxylation and midazolam 1'-hydroxylation) after 30-min preincubation with NADPH. IC(50) values for the inhibition of testosterone 6beta-hydroxylase obtained in the NADPH-preincubation experiment for nicardipine (1 microM), verapamil (2 microM), and diltiazem (5 microM) were within 10-fold, whereas those for amlodipine (5 microM) and felodipine (13 microM) were >200-fold of their respective plasma concentrations reported after therapeutic doses. Similar results also were obtained based on midazolam 1'-hydroxylase activity. Unlike the observations with mibefradil, a potent irreversible inhibitor of CYP3A, the NADPH-dependent inhibition of CYP3A activity by nicardipine and verapamil was completely reversible on dialysis, whereas that by diltiazem was partially restored (80%). Additional experiments revealed that nicardipine, verapamil, and diltiazem formed cytochrome P-450-iron (II)-metabolite complex in both human liver microsomes and recombinant CYP3A4. Nicardipine yielded a higher extent of complex formation ( approximately 30% at 100 microM), and was a much faster-acting inhibitor (maximal inhibition rate constant approximately 2 min(-1)) as compared with verapamil and diltiazem. These present findings that the CYP3A inhibition caused by nicardipine, verapamil, and diltiazem is, at least in part, quasi-irreversible provide a rational basis for pharmacokinetically significant interactions reported when they were coadministered with agents that are cleared primarily by CYP3A-mediated pathways.

Publication types

  • Comparative Study

MeSH terms

  • Aryl Hydrocarbon Hydroxylases*
  • Calcium Channel Blockers / metabolism
  • Calcium Channel Blockers / pharmacology*
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme Inhibitors
  • Cytochrome P-450 Enzyme System / metabolism*
  • Drug Interactions
  • Humans
  • Iron / metabolism
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / metabolism
  • Mibefradil / pharmacology
  • Microdialysis
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / enzymology
  • Oxidoreductases, N-Demethylating / antagonists & inhibitors
  • Oxidoreductases, N-Demethylating / metabolism*
  • Recombinant Proteins / metabolism

Substances

  • Calcium Channel Blockers
  • Cytochrome P-450 Enzyme Inhibitors
  • Isoenzymes
  • Recombinant Proteins
  • Mibefradil
  • Cytochrome P-450 Enzyme System
  • Iron
  • Aryl Hydrocarbon Hydroxylases
  • Cytochrome P-450 CYP3A
  • Oxidoreductases, N-Demethylating