Although initially reported as an androgen-repressed gene in the rat prostate, the functional role of testosterone-repressed prostate message-2 (TRPM-2) in apoptosis remains undefined. Inhibition of castration-induced apoptosis by calcium channel blocker treatment in androgen-dependent Shionogi tumors resulted in the prevention of TRPM-2 gene up-regulation, suggesting that TRPM-2 is not directly androgen-repressed, but is regulated by apoptotic stimuli. The overexpression of the TRPM-2 gene in human androgen-dependent LNCaP prostate cancer cells by stable transfection rendered them highly resistant to androgen ablation in vivo. We then tested the efficacy of antisense TRPM-2 oligodeoxynucleotide (ODN) therapy in the Shionogi tumor model and demonstrated that the systemic administration of antisense TRPM-2 ODNs in mice bearing Shionogi tumors after castration resulted in a more rapid onset of apoptosis and time to complete regression, as well as a significant delay of emergence of androgen-independent recurrent tumors compared to control ODN treatment. Collectively, these findings illustrate that TRPM-2 is an antiapoptotic rather than an androgen-repressed gene that confers resistance to androgen ablation and thereby helps accelerate the progression to androgen independence.