The molecular basis of the infectious, inherited and sporadic forms of prion diseases is best explained by a conformationally dimorphic protein that can exist in distinct normal and disease-causing isoforms. We identified a 55-residue peptide of a mutant prion protein that can be refolded into at least two distinct conformations. When inoculated intracerebrally into the appropriate transgenic mouse host, 20 of 20 mice receiving the beta-form of this peptide developed signs of central nervous system dysfunction at approximately 360 days, with neurohistologic changes that are pathognomonic of Gerstmann-Sträussler-Scheinker disease. By contrast, eight of eight mice receiving a non-beta-form of the peptide failed to develop any neuropathologic changes more than 600 days after the peptide injections. We conclude that a chemically synthesized peptide refolded into the appropriate conformation can accelerate or possibly initiate prion disease.
Copyright 2000 Academic Press.