In time-resolved contrast-enhanced 3D MR angiography, spatial resolution is traded for high temporal resolution. A hybrid method is presented that attempts to reduce this tradeoff in two of the spatial dimensions. It combines an undersampled projection acquisition in two dimensions with variable rate k-space sampling in the third. Spatial resolution in the projection plane is determined by readout resolution and is limited primarily by signal-to-noise ratio. Oversampling the center of k-space combined with temporal k-space interpolation provides time frames with minimal venous contamination. Results demonstrating improved resolution in phantoms and volunteers are presented using angular undersampling factors up to eight with acceptable projection reconstruction artifacts.