Nitric oxide modulates the catalytic activity of myeloperoxidase

J Biol Chem. 2000 Feb 25;275(8):5425-30. doi: 10.1074/jbc.275.8.5425.

Abstract

Myeloperoxidase (MPO), an abundant protein in neutrophils, monocytes, and subpopulations of tissue macrophages, is believed to play a critical role in host defenses and inflammatory tissue injury. To perform these functions, an array of diffusible radicals and reactive oxidant species may be formed through oxidation reactions catalyzed at the heme center of the enzyme. Myeloperoxidase and inducible nitric-oxide synthase are both stored in and secreted from the primary granules of activated leukocytes, and nitric oxide (nitrogen monoxide; NO) reacts with the iron center of hemeproteins at near diffusion-controlled rates. We now demonstrate that NO modulates the catalytic activity of MPO through distinct mechanisms. NO binds to both ferric (Fe(III), the catalytically active species) and ferrous (Fe(II)) forms of MPO, generating stable low-spin six-coordinate complexes, MPO-Fe(III).NO and MPO-Fe(II).NO, respectively. These nitrosyl complexes were spectrally distinguishable by their Soret absorbance peak and visible spectra. Stopped-flow kinetic analyses indicated that NO binds reversibly to both Fe(III) and Fe(II) forms of MPO through simple one-step mechanisms. The association rate constant for NO binding to MPO-Fe(III) was comparable to that observed with other hemoproteins whose activities are thought to be modulated by NO in vivo. In stark contrast, the association rate constant for NO binding to the reduced form of MPO, MPO-Fe(II), was over an order of magnitude slower. Similarly, a 2-fold decrease was observed in the NO dissociation rate constant of the reduced versus native form of MPO. The lower NO association and dissociation rates observed suggest a remarkable conformational change that alters the affinity and accessibility of NO to the distal heme pocket of the enzyme following heme reduction. Incubation of NO with the active species of MPO (Fe(III) form) influenced peroxidase catalytic activity by dual mechanisms. Low levels of NO enhanced peroxidase activity through an effect on the rate-limiting step in catalysis, reduction of Compound II to the ground-state Fe(III) form. In contrast, higher levels of NO inhibited MPO catalysis through formation of the nitrosyl complex MPO-Fe(III)-NO. NO interaction with MPO may thus serve as a novel mechanism for modulating peroxidase catalytic activity, influencing the regulation of local inflammatory and infectious events in vivo.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Catalysis
  • Ferric Compounds / metabolism
  • Ferrous Compounds / metabolism
  • Humans
  • Kinetics
  • Leukocytes / enzymology
  • Models, Chemical
  • Nitric Oxide / metabolism*
  • Peroxidase / metabolism*
  • Protein Binding
  • Spectrophotometry, Ultraviolet
  • Time Factors

Substances

  • Ferric Compounds
  • Ferrous Compounds
  • Nitric Oxide
  • Peroxidase