The HS-40 enhancer is the major cis-acting regulatory element responsible for the developmental stage- and erythroid lineage-specific expression of the human alpha-like globin genes, the embryonic zeta and the adult alpha2/alpha/1. A model has been proposed in which competitive factor binding at one of the HS-40 motifs, 3'-NA, modulates the capability of HS-40 to activate the embryonic zeta-globin promoter. Furthermore, this modulation was thought to be mediated through configurational changes of the HS-40 enhanceosome during development. In this study, we have further investigated the molecular basis of this model. First, human erythroid K562 cells stably integrated with various HS-40 mutants cis linked to a human alpha-globin promoter-growth hormone hybrid gene were analyzed by genomic footprinting and expression analysis. By the assay, we demonstrate that factors bound at different motifs of HS-40 indeed act in concert to build a fully functional enhanceosome. Thus, modification of factor binding at a single motif could drastically change the configuration and function of the HS-40 enhanceosome. Second, a specific 1-bp, GC-->TA mutation in the 3'-NA motif of HS-40, 3'-NA(II), has been shown previously to cause significant derepression of the embryonic zeta-globin promoter activity in erythroid cells. This derepression was hypothesized to be regulated through competitive binding of different nuclear factors, in particular AP1 and NF-E2, to the 3'-NA motif. By gel mobility shift and transient cotransfection assays, we now show that 3'-NA(II) mutation completely abolishes the binding of small MafK homodimer. Surprisingly, NF-E2 as well as AP1 can still bind to the 3'-NA(II) sequence. The association constants of both NF-E2 and AP1 are similar to their interactions with the wild-type 3'-NA motif. However, the 3'-NA(II) mutation causes an approximately twofold reduction of the binding affinity of NF-E2 factor to the 3'-NA motif. This reduction of affinity could be accounted for by a twofold-higher rate of dissociation of the NF-E2-3'-NA(II) complex. Finally, we show by chromatin immunoprecipitation experiments that only binding of NF-E2, not AP1, could be detected in vivo in K562 cells around the HS-40 region. These data exclude a role for AP1 in the developmental regulation of the human alpha-globin locus via the 3'-NA motif of HS-40 in embryonic/fetal erythroid cells. Furthermore, extrapolation of the in vitro binding studies suggests that factors other than NF-E2, such as the small Maf homodimers, are likely involved in the regulation of the HS-40 function in vivo.