To achieve transmission, a subpopulation of asexually dividing bloodstream forms of the human malaria parasite Plasmodium falciparum withdraws from the cell cycle to develop into gametocytes - cells specialized for sexual reproduction and invasion of the mosquito vector. For natural selection to maximize transmission to new hosts, a balance must have evolved between asexual replication and sexual differentiation. Here, Mike Dyer and Karen Day consider observations on the process of commitment to gametocytogenesis and use this information as the framework for a model that begins to explain the control of the dynamics between asexual and sexual development.