Apolipoprotein E (apoE) alleles determine the age-adjusted relative risk (epsilon4 > epsilon3) for Alzheimer's disease (AD). ApoE may affect AD pathogenesis by promoting deposition of the amyloid-beta (Abeta) peptide and its conversion to a fibrillar form. To determine the effect of apoE on Abeta deposition and AD pathology, we compared APP(V717F) transgenic (TG) mice expressing mouse, human, or no apoE (apoE(-/-)). A severe, plaque-associated neuritic dystrophy developed in APP(V717F) TG mice expressing mouse or human apoE. Though significant levels of Abeta deposition also occurred in APP(V717F) TG, apoE(-/-) mice, neuritic degeneration was virtually absent. Expression of apoE3 and apoE4 in APP(V717F) TG, apoE(-/-) mice resulted in fibrillar Abeta deposits and neuritic plaques by 15 months of age and substantially (>10-fold) more fibrillar deposits were observed in apoE4-expressing APP(V717F) TG mice. Our data demonstrate a critical and isoform-specific role for apoE in neuritic plaque formation, a pathological hallmark of AD.