1. In anaesthetised rats, activity recorded from sympathetic postganglionic neurones innervating the tail circulation has characteristic rhythmicity (0.4-1.2 Hz). At the population level this rhythmicity can be seen as a peak (T-peak) in autospectra of sympathetic activity recorded from ventral collector nerves (VCNs). 2. Here we investigated whether nerves supplying thermoregulatory circulations share common rhythmic discharges at T-peak frequency. Activity was recorded from nerve pairs consisting of left ventral collector nerve (LVCN) and one of the following: right ventral collector nerve (RVCN), left dorsal collector nerve (DCN), left saphenous nerve (SN) or left renal nerve (RN). 3. During central apnoea, T-peak frequencies in RVCN autospectra were similar to those of simultaneously recorded LVCN and these activities were coherent. Similar observations were made for nerve pairs involving LVCN-DCN and LVCN-SN. In contrast, autospectra of RN activity did not contain T-peaks. 4. In comparison to the peaks in autospectra of RN activity, when the frequency of rhythmic phrenic nerve activity was manipulated T-peaks in VCN, DCN and SN autospectra did not show obligatory 1:1 locking. 5. We conclude that T-peaks are a robust feature of autospectra of sympathetic discharges supplying thermoregulatory circulation but not those influencing the kidney. The high coherence demonstrated between the T-peak discharges is consistent with the view that common/coupled oscillators located within the CNS influence cutaneous vasoconstrictor sympathetic activity.