Objective: Lacidipine has already been demonstrated to reduce the expression of some adhesion molecules induced by pro-oxidant signals on endothelial cells. In order to verify if this effect is a peculiarity of this molecule, or belongs to other dihydropyridinic compounds (DHPs), the activity of lacidipine was compared with that of lercanidipine, amlodipine, nimodipine and nifedipine.
Design and methods: The compounds were incorporated in human umbilical vein endothelial cells (HUVECs) using native low-density lipoprotein as a carrier. The drug concentrations in HUVECs were measured by mass spectrometry. Human recombinant tumour necrosis factor-alpha was then incubated with HUVECs for 7 h at 37 degrees C for adhesion molecule expression.
Results: The cellular amount of lacidipine, lercanidipine and amlodipine was similar, while nimodipine and nifedipine were almost undetectable or undetectable, respectively. Lacidipine, at any concentration, determined a dose-dependent significant decrease of the expression of intercellular adhesion molecule-1 (ICAM-1) ICAM-1, vascular cell adhesion molecule-1 (VCAM-1) VCAM-1 and E-selectin (P < 0.01). Lercanidipine and amlodipine determined variable decreases of adhesion molecules at the intermediate and highest concentrations. Nimodipine and nifedipine determined no effect on ICAM-1, VCAM-1 and E-selectin. The lowest IC50, i.e. the concentration determining the 50% reduction of ICAM-1, VCAM-1 and E-selectin expression was obtained with lacidipine for all the adhesion molecules considered (P < 0.01).
Conclusions: It is concluded that the effect of the DHPs used in this study on adhesion molecule expression is determined first by their lipophilicity and then by their intrinsic antioxidant activity.