Apoptosis during iron chelator-induced differentiation in F9 embryonal carcinoma cells

Cell Biol Int. 1999;23(8):541-50. doi: 10.1006/cbir.1999.0407.

Abstract

We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects*
  • Butyrates / pharmacology
  • Cell Differentiation / drug effects
  • Chelating Agents / pharmacology
  • DNA Fragmentation / drug effects
  • Deferoxamine / pharmacology
  • Dithizone / pharmacology
  • Dose-Response Relationship, Drug
  • Embryonal Carcinoma Stem Cells
  • Image Cytometry
  • Iron Chelating Agents / pharmacology*
  • Monoterpenes*
  • Neoplastic Stem Cells / cytology*
  • Tretinoin / pharmacology
  • Tropolone / analogs & derivatives*
  • Tropolone / pharmacology

Substances

  • Antineoplastic Agents
  • Butyrates
  • Chelating Agents
  • Iron Chelating Agents
  • Monoterpenes
  • Tretinoin
  • Dithizone
  • Tropolone
  • Deferoxamine
  • beta-thujaplicin