Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis

Microbiology (Reading). 2000 Feb:146 ( Pt 2):263-271. doi: 10.1099/00221287-146-2-263.

Abstract

Transport systems for C4-dicarboxylates, such as malate, fumarate and succinate, are poorly understood in Gram-positive bacteria. The whole genome sequence of Bacillus subtilis revealed two genes, ydbE and ydbH, whose deduced products are highly homologous to binding proteins and transporters for C4-dicarboxylates in Gram-negative bacteria. Between ydbE and ydbH, genes ydbF and ydbG encoding a sensor-regulator pair, were located. Inactivation of each one of the ydbEFGH genes caused a deficiency in utilization of fumarate or succinate but not of malate. Expression of ydbH, encoding a putative transporter, was stimulated in a minimal salt medium containing 0-05% yeast extract but repressed by the addition of malate to the medium. Inactivation of the putative sensor-regulator pair or solute-binding protein, ydbFG or ydbE, caused complete loss of ydbH expression. The utilization of fumarate and stimulation of ydbH expression resumed in a ydbE null mutant in which ydbFGH were overproduced. Based on these observations, together with analysis of the sequence similarities of the deduced product, we conclude that YdbH is a C4-dicarboxylate-transport protein and its expression is regulated by a C4-dicarboxylate sensor kinase-regulator pair, YdbF and YdbG. Furthermore, it is suggested that YdbE does not directly participate in transport of C4-dicarboxylates, but plays a sensory role in the ydbF-ydbG two-component system, giving rise to specificity or increased efficiency to the system. Deletion analysis of the promoter region of ydbH revealed that a direct repeat sequence was required for the activation of ydbH expression. A catabolite-responsive element (CRE) was also found in the -10 region of the promoter, suggesting negative regulation by a CRE-binding protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacillus subtilis / genetics*
  • Bacillus subtilis / growth & development
  • Bacillus subtilis / metabolism*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Base Sequence
  • Carrier Proteins / genetics*
  • Carrier Proteins / metabolism
  • Culture Media
  • Dicarboxylic Acids / metabolism*
  • Gene Expression Regulation, Bacterial*
  • Molecular Sequence Data
  • Mutation
  • Operon
  • Plasmids / genetics
  • Tetracycline Resistance / genetics
  • Transcription, Genetic
  • Transformation, Bacterial

Substances

  • Bacterial Proteins
  • Carrier Proteins
  • Culture Media
  • Dicarboxylic Acids