Recent observations have shown that in lactating rats previously deprived of suckling, either suckling stimulus or ip injection of norepinephrine was capable of increasing mammary deiodinase type 1 (M-D1) mRNA content and enzyme activity. In the present work, we show that intact efferent sympathetic mammary innervation is required to restore both mammary D1 mRNA content and enzyme activity, whereas suckling-induced secretion of catecholamines from the adrenal glands does not seem to participate in M-D1 enzyme regulation. The data also indicate that the sympathetic reflex activation in response to suckling involves two complementary autonomic components: (1) activation, presumably through mammary segmental arrangement affecting neighboring mammary glands; and (2) an individual reflex regulatory mechanism capable of maintaining M-D1 activity within each mammary gland. In addition to these findings, we show that the suckling-induced sympathetic activation of M-D1 activity could be blocked by prior activation of ductal mechanoreceptors. This set of regulatory and counterregulatory mechanisms seems to ensure the optimal control of mammary energetic expenditure according to litter size.