Assessment of resorbable bioactive material for grafting of critical-size cancellous defects

J Orthop Res. 2000 Jan;18(1):140-8. doi: 10.1002/jor.1100180120.

Abstract

Bioactive glasses form a surface apatite layer in vivo that enhances the formation and attachment of bone. Sol-gel Bioglass graft material provides greater nanoscale porosity than bioactive glass (on the order of 50-200 A), greater particle surface area, and improved resorbability, while maintaining bioactivity. This study histologically and biomechanically evaluated, in a rabbit model, bone formed within critical-sized distal femoral cancellous bone defects filled with 45S5 Bioglass particulates, 77S sol-gel Bioglass, or 58S sol-gel Bioglass and compared the bone in these defects with normal, intact, untreated cancellous bone and with unfilled defects at 4, 8, and 12 weeks. All grafted defects had more bone within the area than did unfilled controls (p < 0.05). The percentage of bone within the defect was significantly greater for the 45S5 material than for the 58S or 77S material at 4 and 8 weeks (p < 0.05), yet by 12 weeks equivalent amounts of bone were observed for all materials. By 12 weeks, all grafted defects were equivalent to the normal untreated bone. The resorption of 77S and 58S particles was significantly greater than that of 45S5 particles (p < 0.05). Mechanically, the grafted defects had compressive stiffness equivalent to that of normal bone at 4 and 8 weeks. At 12 weeks, 45S5-grafted defects had significantly greater stiffness (p < 0.05). At 8 and 12 weeks, all grafted defects had significantly greater stiffness than unfilled control defects (p < 0.05). In general, the 45S5-filled defects exhibited greater early bone ingrowth than did those filled with 58S or 77S. However, by 12 weeks, the bone ingrowth in each defect was equivalent to each other and to normal bone. The 58S and 77S materials resorbed faster than the 45S5 materials. Mechanically, the compressive characteristics of all grafted defects were equivalent or greater than those of normal bone at all time points.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials*
  • Biomechanical Phenomena
  • Bone Transplantation*
  • Calcium / analysis
  • Rabbits
  • Silicon / analysis

Substances

  • Biocompatible Materials
  • Calcium
  • Silicon