Ribosomal subunit kinases (Rsk) have been implicated in the regulation of transcription by phosphorylating and thereby activating numerous transcription factors, such as c-Fos, cAMP responsive element binding protein (CREB), and nuclear receptors. Here we describe the generation and characterization of immortalized embryonic fibroblast cell lines from mice in which the Rsk-2 gene was disrupted by homologous recombinant gene targeting. Rsk-2-deficient (knockout or KO) cell lines have no detectable Rsk-2 protein, whereas Rsk-1 expression is unaltered as compared with cell lines derived from wild-type control mice. KO cells exhibit a major reduction in platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF)-1-stimulated expression of the immediate-early gene c-Fos. This results primarily from a reduced transcriptional activation of the ternary complex factor Elk-1 and reduced activation of the serum response factor. The reduced Elk-1 activation in KO cells occurs despite normal activation of the mitogen-activated protein kinase pathway and normal PDGF- and IGF-1-stimulated Elk-1 phosphorylation. By contrast, PDGF- and IGF-1-stimulated phosphorylation and transcriptional activation of CREB is unaltered in KO cells. Thus Rsk-2 is required for growth factor-stimulated expression of c-Fos and transcriptional activation of Elk-1 and the serum response factor, but not for activation of CREB or the mitogen-activated protein kinase pathway in response to PDGF and IGF-1 stimulation.