We are developing assays for noninvasive, quantitative imaging of reporter genes with positron emission tomography (PET), for application both in animal models and in human gene therapy. We report here a method to improve the detection of lower levels of PET reporter gene expression by utilizing a mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk) as a PET reporter gene. The HSV1-sr39tk mutant was identified from a library of site-directed mutants. Accumulation (net uptake) of the radioactively labeled substrates [8-(3)H]penciclovir ([8-(3)H]PCV), and 8-[(18)F]fluoropenciclovir (FPCV) in C6 rat glioma cells expressing HSV1-sr39tk is increased by a factor of approximately 2.0 when compared with C6 cells expressing wild-type HSV1-tk. The increased imaging sensitivity of HSV1-sr39tk when FPCV is used is also demonstrated in vivo both with tumor cells stably transfected with either HSV1-tk or HSV1-sr39tk, and after hepatic delivery of HSV1-tk or HSV1-sr39tk by using adenoviral vectors. The use of HSV1-sr39tk as a PET reporter gene and FPCV as a PET reporter probe results in significantly enhanced sensitivity for imaging reporter gene expression in vivo.