Macrophage-induced lung inflammation contributes substantially to respiratory failure during Pneumocystis carinii pneumonia. We isolated a P. carinii cell wall fraction rich in glucan carbohydrate, which potently induces TNF-alpha and macrophage-inflammatory protein-2 generation from alveolar macrophages. Instillation of this purified P. carinii carbohydrate cell wall fraction into healthy rodents is accompanied by substantial increases in whole lung TNF-alpha generation and is associated with neutrophilic infiltration of the lungs. Digestion of the P. carinii cell wall isolate with zymolyase, a preparation containing predominantly beta-1,3 glucanase, substantially reduces the ability of this P. carinii cell wall fraction to activate alveolar macrophages, thus suggesting that beta-glucan components of the P. carinii cell wall largely mediate TNF-alpha release. Furthermore, the soluble carbohydrate beta-glucan receptor antagonists laminariheptaose and laminarin also substantially reduce the ability of the P. carinii cell wall isolate to stimulate macrophage-inflammatory activation. In contrast, soluble alpha-mannan, a preparation that antagonizes macrophage mannose receptors, had minimal effect on TNF-alpha release induced by the P. carinii cell wall fraction. P. carinii beta-glucan-induced TNF-alpha release from alveolar macrophages was also inhibited by both dexamethasone and pentoxifylline, two pharmacological agents with potential activity in controlling P. carinii-induced lung inflammation. These data demonstrate that P. carinii beta-glucan cell wall components can directly stimulate alveolar macrophages to release proinflammatory cytokines mainly through interaction with cognate beta-glucan receptors on the phagocyte.