The structure and oxygen affinity of hemoglobin from erythrocytes of CeCl(3) fed Wistar rats in the dose range of 0.2-20.0 mg/kg body weight/day were investigated by means of various spectroscopic methods. The changes in oxygen saturation curves of hemoglobin are dependent upon both feeding dose and feeding time. After 40 days feeding with 20 mg CeCl(3)/kg body weight/day, the curve changed to a double sigmoid shape and the oxygen affinity in low oxygen pressure increases. It regained the sigmoid form after 80 days feeding, but the degree of oxygen saturation in higher oxygen pressure became higher than that in the control. These results indicate that CeCl(3) can increase the oxygen affinity of hemoglobin of rat erythrocytes. This effect is further demonstrated by the analysis of Mössbauer spectra of erythrocytes. Increase of hemoglobin content in erythrocytes was found in rats fed with CeCl(3). It might be the offset response to the poor oxygen-releasing capability of the hemoglobin. CD and FT-IR deconvoluted spectra indicate that secondary structures of hemoglobin have remarkable changes, characterized by a gradual decrease of alpha-helix content, in a dose- and feeding time-dependent fashion. Meanwhile, the 31P NMR spectra demonstrate that the level of 2,3-diphosphoglyceric acid (2,3-DPG) in erythrocytes, an allosteric regulator of oxygen release from hemoglobin, decreases due to its hydrolysis. In addition, the Mössbauer and ESR spectra show clearly that a fraction of the heme-iron changes from Fe (II) to Fe (III) in CeCl(3) fed rats. The results indicate that the oral administration of CeCl(3) leads to a microenvironment changes of heme in intracellular hemoglobin. Oxygen affinity changes might be attributed to a series of events triggered by the binding of Ce (III) to hemoglobin and 2,3-DPG, including conformational changes of hemoglobin and 2,3-DPG hydrolysis, respectively and also the partial transformation from heme-Fe (II) to heme-Fe (III).