An experimental difficulty in unraveling circuits in the mammalian nervous system is the identification of postsynaptic targets of a given neuron. Besides ultrastructural reconstructions, simultaneous recordings from pairs of cells in brain slices have been used to identify connected neurons. We describe in this paper a technique using calcium imaging that allows rapid identification of potential postsynaptic targets. This method consists of stimulating one neuron ("trigger") while imaging a population of cells to detect which other neurons ("followers") are activated by the trigger. By using bulk-loading of calcium indicators in slices of mouse visual cortex, we demonstrate that neurons that display somatic calcium transients time-locked to the spikes of a trigger neuron can be monosynaptically connected to it. This technique could be applied to reconstruct and assay circuits in the central nervous system.