It is generally known that accurate model building, i.e., proper model structure selection and reliable parameter estimation, constitutes an essential matter in the field of predictive microbiology, in particular, when integrating these predictive models in food safety systems. In this context, Versyck et al. (1999) have introduced the methodology of optimal experimental design techniques for parameter estimation within the field. Optimal experimental design focuses on the development of optimal input profiles such that the resulting rich (i.e., highly informative) experimental data enable unique model parameter estimation. As a case study, Versyck et al. (1999) [Versyck, K., Bernaerts, K., Geeraerd, A.H., Van Impe, J.F., 1999. Introducing optimal experimental design in predictive modeling: a motivating example. Int. J. Food Microbiol., 51(1), 39-51] have elaborated the estimation of Bigelow inactivation kinetics parameters (in a numerical way). Opposed to the classic (static) experimental approach in predictive modelling, an optimal dynamic experimental setup is presented. In this paper, the methodology of optimal experimental design or parameter estimation is applied to obtain uncorrelated estimates of the square root model parameters [Ratkowsky, D.A., Olley, J., McMeekin, T.A., Ball, A., 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149, 1-5] describing the effect of suboptimal growth temperatures on the maximum specific growth rate of microorganisms. These estimates are the direct result of fitting a primary growth model to cell density measurements as a function of time. Apart from the design of an optimal time-varying temperature profile based on a sensitivity study of the model output, an important contribution of this publication is a first experimental validation of this innovative dynamic experimental approach for uncorrelated parameter identification. An optimal step temperature profile, within the range of model validity and practical feasibility, is developed for Escherichia coli K12 and successfully applied in practice. The presented experimental validation result illustrates the large potential of the dynamic experimental approach in the context of uncorrelated parameter estimation. Based on the experimental validation result, additional remarks are formulated related to future research in the field of optimal experimental design.