The liver plays a critical role in the inflammatory response to injury; however, the mechanisms by which the liver is affected and how it influences the rest of the immune system are not well understood. Partial hepatectomy is a direct injury to the liver, whereas a burn is an indirect injury to liver, but both injuries appear to produce damage to the liver. In this study, we used a mouse model of 25% total body surface area and 40% total body surface area full-thickness burns to investigate the mechanism of liver damage and response to burn injury by measuring levels of c-Jun messenger (m)RNA, NFkappaB nuclear protein, interleukin-6, transaminases, and liver tissue histology over time. c-Jun and NFkappaB are 2 transcription factors that are induced by partial hepatectomy and related to hepatocyte injury and growth. In both groups of mice with burns, expression of c-Jun mRNA and NFkappaB nuclear protein was activated within 30 minutes after the burn injury, followed by increased levels of interleukin-6 and, finally, elevated enzyme levels. Liver injuries were similar in both groups despite the magnitude of the burns. We believe that these gene products are initiated in the hepatocyte injury after a burn and that they precede other inflammatory responses such as cytokine release, plasma transaminase levels, and histologic changes.