Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate

J Biol Chem. 2000 Apr 14;275(15):10812-8. doi: 10.1074/jbc.275.15.10812.

Abstract

The reactions of nitric oxide ((.)NO) and alpha-tocopherol (alpha-TH) during membrane lipid oxidation were examined and compared with the pair alpha-TH/ascorbate. Nitric oxide serves as a more potent inhibitor of lipid peroxidation propagation reactions than alpha-TH and protects alpha-TH from oxidation. Mass spectrometry, oxygen and (.)NO consumption, conjugated diene analyses, and alpha-TH fluorescence determinations all demonstrated that (.)NO preferentially reacts with lipid radical species, with alpha-TH consumption not occurring until (.)NO concentrations fell below a critical level. In addition, alpha-TH and (.)NO cooperatively inhibit lipid peroxidation, exhibiting greater antioxidant capacity than the pair alpha-TH/ascorbate. Pulse radiolysis analysis showed no direct reaction between (.)NO and alpha-tocopheroxyl radical (alpha-T(.)), inferring that peroxyl radical termination reactions are the principal lipid-protective mechanism mediated by (.)NO. These observations support the concept that (.)NO is a potent chain breaking antioxidant toward peroxidizing lipids, due to facile radical-radical termination reactions with lipid radical species, thus preventing alpha-TH loss. The reduction of alpha-T(.) by ascorbate was a comparatively less efficient mechanism for preserving alpha-TH than (.)NO-mediated termination of peroxyl radicals, due to slower reaction kinetics and limited transfer of reducing equivalents from the aqueous phase. Thus, the high lipid/water partition coefficient of (.)NO, its capacity to diffuse and concentrate in lipophilic milieu, and a potent reactivity toward lipid radical species reveal how (.)NO can play a critical role in regulating membrane and lipoprotein lipid oxidation reactions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amidines / pharmacology
  • Antioxidants / pharmacology*
  • Ascorbic Acid / pharmacology*
  • Free Radicals
  • Linoleic Acid / metabolism
  • Lipid Peroxidation*
  • Nitric Oxide / metabolism*
  • Oxidation-Reduction
  • Vitamin E / pharmacology*

Substances

  • Amidines
  • Antioxidants
  • Free Radicals
  • Vitamin E
  • Nitric Oxide
  • 2,2'-azobis(2-amidinopropane)
  • Linoleic Acid
  • Ascorbic Acid