Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway

J Biol Chem. 2000 Apr 14;275(15):11284-90. doi: 10.1074/jbc.275.15.11284.

Abstract

Adhesion of metastatic human mammary carcinoma MDA-MB-435 cells to the basement membrane protein collagen type IV can be activated by treatment with arachidonic acid. We initially observed that this arachidonic acid-mediated adhesion was inhibited by the tyrosine kinase inhibitor genistein. Therefore, we examined the role of the mitogen-activated protein (MAP) kinase family tyrosine phosphorylation-regulated pathways in arachidonic acid-stimulated cell adhesion. Arachidonic acid stimulated the phosphorylation of p38, the activation of MAP kinase-activated protein kinase 2 (MAPKAPK2, a downstream substrate of p38), and the phosphorylation of heat shock protein 27 (a downstream substrate of MAP kinase-activated protein kinase 2). Treatment with the p38 inhibitor PD169316 completely and specifically inhibited arachidonic acid-mediated cell adhesion to collagen type IV. p38 activity was specifically associated with arachidonic acid-stimulated adhesion; this was demonstrated by the observation that 12-O-tetradecanoylphorbol 13-acetate-activated cell adhesion was not blocked by inhibiting p38 activity. Extracellular signal-regulated protein kinases (ERKs) 1 and 2 were also activated by arachidonic acid; however, cell adhesion to collagen type IV was not highly sensitive to PD98059, an inhibitor of MAP kinase kinase/ERK kinase 1 (MEK1) that blocks activation of the ERKs. c-Jun NH(2)-terminal kinase was not activated by arachidonic acid treatment of these cells. Together, these data suggest a novel role for p38 MAP kinase in regulating adhesion of breast cancer cells to collagen type IV.

MeSH terms

  • Arachidonic Acid / pharmacology*
  • Breast Neoplasms / pathology
  • Calcium-Calmodulin-Dependent Protein Kinases / physiology*
  • Cell Adhesion / drug effects
  • Collagen / physiology*
  • Dose-Response Relationship, Drug
  • Enzyme Activation / drug effects
  • Female
  • HSP27 Heat-Shock Proteins
  • Heat-Shock Proteins*
  • Humans
  • Intracellular Signaling Peptides and Proteins
  • Mitogen-Activated Protein Kinase 1 / physiology
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / physiology
  • Molecular Chaperones
  • Neoplasm Proteins / physiology
  • Phosphorylation
  • Protein Serine-Threonine Kinases / physiology*
  • Tumor Cells, Cultured
  • p38 Mitogen-Activated Protein Kinases

Substances

  • HSP27 Heat-Shock Proteins
  • HSPB1 protein, human
  • Heat-Shock Proteins
  • Intracellular Signaling Peptides and Proteins
  • Molecular Chaperones
  • Neoplasm Proteins
  • Arachidonic Acid
  • Collagen
  • MAP-kinase-activated kinase 2
  • Protein Serine-Threonine Kinases
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases