Are changes in myocardial integrated backscatter restricted to the ischemic zone in acute induced ischemia? An in vivo animal study

J Am Soc Echocardiogr. 2000 Apr;13(4):306-15. doi: 10.1067/mje.2000.103595.

Abstract

Integrated backscatter (IB) from a myocardial region, calculated from radiofrequency echocardiographic data, has been proposed as a useful parameter for investigating changes in myocardial tissue induced by ischemia. In 10 closed-chest dogs, 5 minutes of myocardial ischemia was induced by either a proximal occlusion of the circumflex coronary artery (CX) (5 dogs), resulting in extensive ischemia in the posterior wall, or by occluding the distal CX vessel (5 dogs) to produce a small localized ischemic zone in the posterior wall. High-resolution digital radiofrequency data from the whole left ventricular myocardium, in the imaging plane during one complete heart cycle, were acquired with a whole-image real-time acquisition approach. Regions in the septum and posterior wall (both ischemic tissue and, in the case of distal occlusions, tissue surrounding the ischemic zone) were chosen for analysis, and IB and cyclic variation (CV) of IB were calculated. Post occlusion, an increase in mean IB values was found in the ischemic segment. However, an increase in CV was also observed in the peri-ischemic zone for the distal CX occlusion and in the septum after proximal CX occlusion. These findings show that changes in CV are not restricted to the ischemic zone but may also occur in distal myocardium. This may be explained by changes in the regional contractile state and loading conditions of the "normal" myocardium, which are altered in response to the distal ischemia.

MeSH terms

  • Animals
  • Dogs
  • Image Processing, Computer-Assisted
  • Myocardial Ischemia / diagnostic imaging*
  • Ultrasonics
  • Ultrasonography