The first determinations of substrate water binding to the O(2) evolving complex in photosystem II as a complete function of the S states have been made. H(2)(18)O was rapidly injected into spinach thylakoid samples preset in either the S(0), S(1), S(2), or S(3) states, and the rate of (18)O incorporation into the O(2) produced was determined by time-resolved mass spectrometry. For measurements at m/e = 34 (i.e., for the (16)O(18)O product), the rate of (18)O incorporation in all S states shows biphasic kinetics, reflecting the binding of the two substrate water molecules to the catalytic site. The slow phase kinetics yield rate constants at 10 degrees C of 8 +/- 2, 0.021 +/- 0.002, 2.2 +/- 0.3, and 1.9 +/- 0.2 s(-1) for the S(0), S(1), S(2), and S(3) states, respectively, while the fast phase kinetics yield a rate constant of 36.8 +/- 1.9 s(-1) for the S(3) state but remain unresolvable (>100 (s-1)) for the S(0), S(1), and S(2) states. Comparisons of the (18)O exchange rates reveal that the binding affinity for one of the substrate water molecules first increases during the S(0) to S(1) transition, then decreases during the S(1) to S(2) transition, but stays the same during the S(2) to S(3) transition, while the binding affinity for the second substrate water molecule undergoes at least a 5-fold increase on the S(2) to S(3) transition. These findings are discussed in terms of two independent Mn(III) substrate binding sites within the O(2) evolving complex which are separate from the component that accumulates the oxidizing equivalents. One of the Mn(III) sites may only first bind a substrate water molecule during the S(2) to S(3) transition.