Living organisms are exposed to a number of different fatty acids and their various derivatives arising either via endogenous synthesis or from exogenous sources. These hydrophobic compounds can play specific metabolic, structural or endocrinic functions in the organisms before their elimination, which can be metabolism to CO(2) or to more polar lipid metabolites allowing their excretion. Quantitatively, one of the major pathways metabolizing fatty acids is beta-oxidation, which consists of a set of four reactions operating at the carbons 2 or 3 of acyl-CoA esters and shortening of the acyl-chain. To allow the beta-oxidation of acyl groups with various steric variants to proceed, different strategies have been developed. These strategies include evolution of beta-oxidation enzymes as paralogues showing specificity with respect to either chain-length or modified acyl-chain, metabolic compartmentalization in eukaryotic cells, controlling of substrate transport across membranes, development of auxiliary enzyme systems, acquisition of enzymes with adaptive active sites and recruiting and optimizing enzymes from non-homologous sources allowing them to catalyze a parallel set of reactions with different substrate specificities.