Passive transfer of antiserum specific for immunogens derived from a nontypeable Haemophilus influenzae adhesin and lipoprotein D prevents otitis media after heterologous challenge

Infect Immun. 2000 May;68(5):2756-65. doi: 10.1128/IAI.68.5.2756-2765.2000.

Abstract

We recently determined that passive transfer of serum directed against a synthetic peptide called LB1 or a recombinant fusion protein immunogen [LPD-LB1(f)(2,1,3)] could prevent otitis media after challenge with a homologous nontypeable Haemophilus influenzae (NTHI) isolate. NTHI residing in the nasopharynx was rapidly cleared from this site, thus preventing it from ascending the eustachian tube and inducing otitis media in chinchillas compromised by an ongoing viral upper respiratory tract infection. While LB1 is based solely on one NTHI adhesin, the latter immunogen, LPD-LB1(f)(2,1,3), was designed to incorporate two NTHI antigens shown to play a role in the pathogenesis of otitis media; lipoprotein D (LPD) and the P5-homologous fimbrin adhesin. The design of LPD-LB1(f)(2,1,3) also accommodated for the recently demonstrated existence of three major groupings, based on amino acid sequence diversity, in the third surface-exposed region of P5-fimbrin. LPD-LB1(f)(2,1,3) was thus designed to potentially confer broader protection against challenge by diverse strains of NTHI. Chinchillas were passively immunized here with serum specific for either LB1 or for LPD-LB1(f)(2,1,3) prior to challenge with a member of all three groups of NTHI relative to diversity in region 3. The transferred serum pools were also analyzed for titer, specificity, and several functional activities. We found that both serum pools had equivalent ability to mediate C'-dependent killing and to inhibit adherence of NTHI strains to human oropharyngeal cells. When passively transferred, both serum pools significantly inhibited the signs and incidence of otitis media (P </= 0.01) induced by any of the three challenge isolates. Despite providing protection against disease, the ability of these antisera to induce total eradication of NTHI from the nasopharynx was not equivalent among NTHI groups. These data thus suggested that while early, complete eradication of NTHI from the nasopharynx was highly protective, reduction of the bacterial load to below a critical threshold level appeared to be similarly effective.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adhesins, Bacterial / immunology*
  • Animals
  • Antibodies, Bacterial / immunology*
  • Apolipoproteins / immunology*
  • Apolipoproteins D
  • Bacterial Adhesion / immunology
  • Bacterial Vaccines / immunology*
  • Child
  • Chinchilla
  • Haemophilus Infections / physiopathology
  • Haemophilus Infections / prevention & control*
  • Haemophilus Vaccines / immunology*
  • Haemophilus influenzae / immunology*
  • Humans
  • Immunization, Passive* / methods
  • Otitis Media / microbiology
  • Otitis Media / prevention & control*
  • Otitis Media with Effusion
  • Tympanic Membrane / immunology
  • Vaccines, Synthetic / immunology*

Substances

  • Adhesins, Bacterial
  • Antibodies, Bacterial
  • Apolipoproteins
  • Apolipoproteins D
  • Bacterial Vaccines
  • Haemophilus Vaccines
  • Vaccines, Synthetic