A mass spectrometry study of XCO+, X=Si, Ge: is SiCO+ a main group carbonyl? Comments on the bonding in ground state SiCO and the

Chemistry. 2000 Apr 3;6(7):1236-42. doi: 10.1002/(sici)1521-3765(20000403)6:7<1236::aid-chem1236>3.3.co;2-v.

Abstract

The cation [Si,C,O]+ has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected [Si,C,O]+, generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si(+)-CO, Si(+)-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated [Si,C,O]+ reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si(+)-CO isomer. CCSD(T)@B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states. The results suggest that both Si(+)-CO and Si(+)-OC isomers are feasible; however, the global minimum is 2 pi SiCO+. Isomeric 2 pi SiOC+ is 12.1 kcal mol-1 less stable than 2 pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si-OC isomer (3A") is bound by only 1.5 kcal mol-1. We attribute most, if not all, of the recovery signal in the +NR+ experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si(+)-(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground state bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.