It has been demonstrated that synthesis of serotonin (5-HT) is dependent on the availability of precursor, as well as the activity of 5-HT neurons. In the present series of experiments, we examined the effects of precursor (5-HTP) loading on extracellular hypothalamic 5-HT after administration of fluoxetine alone or in combination with WAY 100635, a selective 5-HT1A antagonist. In the first experiment, fluoxetine alone (10 mg/kg i.p.) caused 5-HT levels to significantly increase to 150% of basal levels. Subsequent administration of 5-HTP at 10, 20, and 40 mg/kg i.p. caused 5-HT levels to further increase to a maximum value of 254%, 405%, and 618%, respectively. In the second experiment, either vehicle or WAY 100635 (1 mg/kg/hour s.c.) was infused, then fluoxetine (10 mg/kg i.p.) and 5-HTP (10 mg/kg i.p.) were administered. By itself, WAY 100635 led to a slight but significant increase in hypothalamic 5-HT levels one hour after the start of administration (130% of basal levels). In the WAY 100635-treated group, fluoxetine caused an increase to 240% of basal levels after one hour, which rose to 290% of basal levels after two hours. Subsequent administration of 5-HTP further increased 5-HT levels to 580% of basal levels after one hour. In the vehicle-treated group, fluoxetine caused an increase of 160% of basal levels which was stable over two hours, and subsequent administration of 5-HTP led to a slight increase in 5-HT levels of 220% after one hour. These results suggest that combining blockade of 5-HT1A autoreceptors with 5-HT uptake inhibition results in a synergistic increase in synthesis and release of 5-HT when precursor is administered.