Cytokines and nitric oxide (NO) have been implicated in the pathogenesis of insulin-dependent diabetes mellitus (IDDM). We have shown that the spin-trapping agent phenyl N-tert-butylnitrone (PBN) protects against streptozotocin (STZ)-induced IDDM in mice. In order to gain more insights into the mechanism(s) of the protective action of PBN against IDDM, we have investigated the effect of this compound on the cytokine-induced NO generation (measured as nitrite) in rat insulinoma RIN-5F cells. Our results demonstrate that PBN cotreatment prevents the generation of nitrite by RIN-5F cells induced by treatment with tumor necrosis factor-alpha, interleukin 1beta, and interferon-gamma in a dose-dependent fashion. The generation of NO as a result of cytokine treatment and the inhibitory effect of PBN were further confirmed by electron paramagnetic resonance spectroscopy. Aminoguanidine, a selective inhibitor of inducible nitric oxide synthase (iNOS), abolished the cytokine-induced nitrite generation whereas N-nitro-l-arginine, an inhibitor more selective for other NOS isoforms, was significantly less effective. Western and Northern analyses demonstrated that PBN inhibits the cytokine-mediated expression of iNOS at the transcriptional level. Cytokine-induced nitrite formation was also inhibited by the two antioxidant agents alpha-lipoic acid and N-acetylcysteine. These results indicate that PBN protects against IDDM at least in part by prevention of cytokine-induced NO generation by pancreatic beta-cells.
Copyright 2000 Academic Press.