Human respiratory syncytial virus (HRSV) is a major cause of serious lower respiratory tract illness in infants, young children, and the elderly. To characterize the circulation patterns of HRSV strains, nucleotide sequencing of the C-terminal region of the G protein gene was performed on 34-53 isolates obtained from 5 communities during 1 epidemic year, representing distinct geographical locations in North America. Phylogenetic analysis revealed that 5-7 HRSV genotypes, including 1 or 2 predominant strains, circulated in each community. The patterns of genotypes were distinct between communities, and less diversity was seen between strains of the same genotype within than between communities. These findings are consistent with HRSV outbreaks' being community based in nature, although transmission of viruses between communities may occur. Several strains are probably introduced or circulate endemically in communities each year, and local factors-possibly immunity induced by previous years' strains-determine which strains predominate during an HRSV season.