Previously, we reported that insulin-stimulated glucose uptake (ISGU) can be inhibited by endothelin (ET-1). However, the mechanism by which ET-1 impairs ISGU in adipocytes remains unclear. This study investigated the effects of ET-1 on insulin action in rat adipocytes in order to elucidate the molecular mechanism of action of ET-1 on ISGU. The results show that ISGU was increased fivefold after 3-h treatment with 1 nM insulin. Treatment with 100 nM ET-1 had no effect on basal glucose uptake. However, ET-1 inhibited approximately 25% of ISGU and 20% of insulin binding after 3-h treatment in the presence of 1 nM insulin. Expression of the beta-subunit of the insulin receptor (IRbeta) and the insulin receptor substrate-1 (IRS-1) in adipocytes was not significantly affected by 1 nM insulin or by 100 nM ET-1, even after 3-h treatment. However, expressions of IRbeta and IRS-1 were dramatically decreased in a dose- and time-dependent manner when adipocytes were treated with both insulin and ET-1. Approximately 50% of IRbeta and 65% of IRS-1 expression levels were suppressed when adipocytes were simultaneously treated with both 1 nM insulin and 100 nM ET-1 for 3 h. These results suggest that the inhibitory effect of ET-1 on ISGU may be mediated via the insulin receptor and suppression of IRbeta/IRS-1 expression.
Copyright 2000 Wiley-Liss, Inc.