The mechanisms leading to a relative dominance of T cells producing type 2 cytokines in certain human immune disorders are still unclear. We investigated the relative susceptibility to apoptosis induced by primary in vitro activation of human type 1 (producing interferon-gamma (IFN-gamma)) or type 2 (producing IL-4) T cells. Peripheral blood lymphocytes were isolated from patients with immune disorders characterized by expansion of type 2 cells (four with AIDS and hyper-IgE/hypereosinophilia, one with Churg-Strauss syndrome, and one with idiopathic hypereosinophilic syndrome) or from individuals with normal cytokine balances. Cells were stimulated for 16 h with ionomycin and phorbol ester, and apoptosis of cytokine-producing cells was assessed by flow cytometry. T cells with a type-2 cytokine profile, i.e. producing IL-4 alone, were significantly more resistant to activation-induced apoptosis than those producing IFN-gamma alone. This was observed in AIDS patients, whose type 2 cells were mostly CD8+, as well as in the patients with Churg-Strauss and with hypereosinophilic syndrome. CD4+ and CD8+ IL-4-producing cells were equally resistant to apoptosis. Lower susceptibility to apoptosis of type-2 T cells was also observed in subjects with normal cytokine balances. Bcl-2 expression was high in type-2 cells and in viable type-1 cells, whereas it was low in apoptotic type-1 cells. Resistance to activation-induced apoptosis may explain the expansion of cells producing type-2 cytokines in certain immune disorders.