Blood coagulation is initiated in response to vessel damage in order to preserve the integrity of the mammalian vascular system. The coagulation cascade can also be initiated by mediators of the inflammatory response, and fibrin deposition has been noted in a variety of pathological states. The cascade of coagulation zymogen activations which leads to clot formation is initiated by exposure of flowing blood to Tissue Factor (TF), the cellular receptor and cofactor for Factor VII (FVII). FVII binds to the receptor in a I:I stoichiometric complex and is rapidly activated. FVIIa undergoes an active site transition upon binding TF in the presence of calcium which enhances the fundamental properties of the enzyme. This results in rapid autocatalytic activation of FVII to FVIIa, thereby amplifying the response by generating more TF-FVIIa complexes. The TF-FVIIa activates both FIX and FX. Further FXa generation by the FIXa-FVIIIa-Ca2+-phospholipid complex is required to sustain the coagulation mechanism, since the TF-FVIIa complex is rapidly inactivated by Tissue Factor pathway inhibitor (TFPI). TFPI circulates in plasma, is associated with vascular cell surface and is released from platelets following stimulation by thrombin. TFPI requires the formation of an active TF-FVIIa complex and FXa generation before inhibition can occur. TFPI prevents further participation of TF in the coagulation process by forming a stable quaternary complex, TF-FVIIa-FXa-TFPI.