Type III secretion systems (TTSS) are important virulence factors that Gram-negative bacteria use to translocate proteins into the cytoplasm of eukaryotic host cells. Salmonellae encode two virulence-associated TTSS. The Salmonella pathogenicity island 1 (SPI1)-encoded TTSS is active on contact with host cells, whereas the Salmonella pathogenicity island 2 (SPI2)-encoded TTSS is expressed after phagocytosis of bacteria by host cells. Previously, no consensus signal sequence for translocation has been identified among TTSS effector proteins. In this work, seven proteins, termed Salmonella-translocated effectors (STE), are described that contain conserved amino acid sequences that direct translocation by TTSS in Salmonella typhimurium. STE that are coordinately regulated with SPI2 gene expression contain translocation signals that are recognized by the SPI2 but not by the SPI1 TTSS. STE that are constitutively expressed contain signals that direct translocation through both SPI1 and SPI2 TTSS. Of the seven STE examined, SspH1 and SspH2 have been previously shown to be translocated and involved in virulence; SlrP and SifA were identified as virulence factors, but were not previously known to be associated with TTSS; and SseI, SseJ, and SifB were previously unidentified. Three STE genes (sspH1, sspH2, and sseI) are located within temperate bacteriophages, suggesting a common mechanism for the dissemination of more recently evolved STE.