Glutamate dehydrogenase (GDH) is allosterically activated by the amino acid leucine to mediate protein stimulation of insulin secretion. Children with the hyperinsulinism/hyperammonemia (HI/HA) syndrome have symptomatic hypoglycemia plus persistent elevations of plasma ammonium. We have reported that HI/HA may be caused by dominant mutations of GDH that lie in a unique allosteric domain that is encoded within GDH exons 11 and 12. To examine the frequency of mutations in this domain, we screened genomic DNA from 48 unrelated cases with the HI/HA syndrome for exon 11 and 12 mutations in GDH. Twenty-five (52%) had mutations in these exons; 74% of the mutations were sporadic. Clinical manifestations included normal birth weight, late onset of hypoglycemia, diazoxide responsiveness, and protein-sensitive hypoglycemia. Enzymatic studies of lymphoblast GDH in seven of the mutations showed that all had reduced sensitivity to inhibition with GTP, consistent with an increase in enzyme activity. Mutations had little or no effect on enzyme responses to positive allosteric effectors, such as ADP or leucine. Based on the three-dimensional structure of GDH, the mutations may function by impairing the binding of an inhibitory GTP to a domain responsible for the allosteric and cooperativity properties of GDH.