Zinc-induced neuronal death in cortical neurons

Cell Mol Biol (Noisy-le-grand). 2000 Jun;46(4):797-806.

Abstract

Although Zn2+ is normally stored and released in the brain, excessive exposure to extracellular Zn2+ can be neurotoxic. The purpose of the present study was to determine the type of neuronal cell death, necrosis versus apoptosis, induced by Zn2+ exposure. Addition of 10-50 microM ZnCl2 to the bathing medium of murine neuronal and glial cell cultures induced, over the next 24 hrs., Zn2+-concentration-dependent neuronal death; some glial death also occurred with Zn2+ concentrations above 30 microM. The neuronal death induced by 20 microM Zn2+ was characterized by coarse chromatin condensation, the formation of apoptotic bodies, and internucleosomal DNA fragmentation. It was attenuated in cortical cell cultures prepared from mice null for the bax gene, and by the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-CH2F (ZVAD, 100 microM), but not by the NMDA receptor antagonist, D-2-amino-5-phosphonovalerate (D-APV, 200 microM ). In contrast, the neuronal death induced by 50 microM Zn2+ was characterized by plasma membrane disruption and random DNA fragmentation; this death was attenuated by D-APV, but exhibited little sensitivity to ZVAD or deletion of bax. These results suggest that Zn2+ can induce cell death with characteristics of either apoptosis or necrosis, depending on the intensity of the Zn2+ exposure.

MeSH terms

  • 2-Amino-5-phosphonovalerate / pharmacology
  • Alleles
  • Animals
  • Apoptosis / drug effects*
  • Cell Membrane / drug effects
  • Chromatin / metabolism
  • Cysteine Proteinase Inhibitors / pharmacology
  • DNA Fragmentation / drug effects
  • Dose-Response Relationship, Drug
  • Electrophoresis, Agar Gel
  • Excitatory Amino Acid Antagonists / pharmacology
  • Genotype
  • L-Lactate Dehydrogenase / metabolism
  • Mice
  • Microscopy, Confocal
  • Microscopy, Electron
  • Necrosis*
  • Neuroglia / drug effects
  • Neurons / cytology
  • Neurons / metabolism*
  • Neurons / pathology*
  • Neurons / ultrastructure
  • Oligopeptides / pharmacology
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins c-bcl-2*
  • Zinc / pharmacology*
  • bcl-2-Associated X Protein

Substances

  • Bax protein, mouse
  • Chromatin
  • Cysteine Proteinase Inhibitors
  • Excitatory Amino Acid Antagonists
  • Oligopeptides
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2-Associated X Protein
  • benzyloxycarbonyl-valyl-alanyl-aspartyl-fluoromethane
  • 2-Amino-5-phosphonovalerate
  • L-Lactate Dehydrogenase
  • Zinc