Isotope selection for permanent prostate implants? An evaluation of 103Pd versus 125I based on radiobiological effectiveness and dosimetry

Semin Urol Oncol. 2000 May;18(2):152-9.

Abstract

Transperineal interstitial permanent prostate brachytherapy (TIPPB) has become an increasingly popular treatment for early-stage/favorable-risk adenocarcinoma of prostate. Within TIPPB, permanent implants often use either (103)Pd (T(1/2) = 17 days) or (125)I (T(1/2) = 60 days). This review compares the radiobiological and treatment planning effectiveness of (103)Pd and (125)I implants by using the linear-quadratic model with recently published data regarding: prostate tumor cell doubling times, T(pot), alpha and alpha/beta, ratio. The tumor potential doubling times (T(pot)) were determined based on recently published proliferation constants (K(p)). The initial slope of the cell radiation dose survival curve, alpha, the terminal slope beta and the alpha/beta ratio were taken from recent published clinical and cellular results. The total dose delivered from each isotope was the dose used clinically, that is, 120 Gy for (103)Pd and 145 Gy for (125)I. Dale's modified linear-quadratic equation was used to estimate the biological effective dose, the cell-surviving fraction, the effective treatment time, and the wasted radiation dose for different values of T(pot). Treatment plans for peripherally loaded implants were compared. The T(pot) reported for organ-confined prostate carcinomas varied from 16 to 67 days. At short T(pot) both isotopes were less effective, but (103)Pd had much less dependence on T(pot) than (125)I. However, at long T(pot) both isotopes produced similar effects. The minimum surviving fraction for exposure to (103)Pd decreased from 1.40 x 10(-4) to 1.31 x 10(-5) as the T(pot) increased from 16 to 67 days. By contrast for exposure to (125)I, the minimum surviving fraction decreased from 3.98 x 10(-3) to 1.98 x 10(-5) over the same range of T(pot). A comparison of treatment plans revealed that (103)Pd plans required more needles and seeds; however, this was a function of seed strength. Both isotopes had similar dose-volume histograms for prostate, urethra, and rectum. The theoretical prediction of effectiveness using the linear quadratic equation for the common clinically prescribed total radiation doses indicated that (103)Pd should be more effective than (125)I because it had less dependence on T(pot). The greatest benefit of (103)Pd was shown to be with tumors with a short T(pot). Although the regrowth delay would be longer with (125)I, the benefit was inconsequential compared with the very slow doubling times of localized prostate cancer. Treatment planning with either isotope revealed no significant differences. These findings may explain why clinically there seemed to be no clear difference in treatment outcome with either isotope. Based on these predictions, we recommend a clinical trial to compare the efficacy of the two isotopes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenocarcinoma / pathology
  • Adenocarcinoma / radiotherapy
  • Algorithms
  • Brachytherapy / methods*
  • Cell Division / radiation effects
  • Cell Survival / radiation effects
  • Dose-Response Relationship, Radiation
  • Half-Life
  • Humans
  • Iodine Radioisotopes / administration & dosage*
  • Iodine Radioisotopes / chemistry
  • Male
  • Palladium / administration & dosage*
  • Palladium / chemistry
  • Prostatic Neoplasms / pathology
  • Prostatic Neoplasms / radiotherapy*
  • Radioisotopes / administration & dosage*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Therapeutic Equivalency
  • Time Factors

Substances

  • Iodine Radioisotopes
  • Radioisotopes
  • Palladium