We describe a patient with carnitine-acylcarnitine translocase deficiency (MIM 212138), who presented with neonatal generalized seizures, heart failure, and coma. Laboratory evaluation revealed hypoglycemia, hyperammonemia, lactic acidemia, hyperuricemia, and mild dicarboxylic aciduria. The fact that total plasma carnitine (7.1 micromol/l [20-30]) and free carnitine (1.9 micromol/l [12-18]) were low together with a high acylcarnitine/free carnitine ratio of 2.7 [0.4-1.0] prompted acylcarnitine analysis. This revealed the presence of large amounts of long-chain derivatives including C(16:0), C(16:1), C(18:1), C(18:2). Based on these findings carnitine-acylcarnitine translocase deficiency was suspected which was confirmed by enzyme studies in fibroblasts. The underlying complex metabolic consequences of this defect are reviewed. Prenatal diagnosis was performed in a subsequent pregnancy and a defect ruled out by measurement of carnitine-acylcarnitine translocase activity in cultured chorionic villi cells. As the clinical recognition of a life-threatening fatty acid oxidation disorder may be difficult, defects in this pathway should be considered in any child with coma, an episode of a Reye-like syndrome, and cardiomyopathy. Since routine laboratory tests often do not provide clues about potential disorders and profiles of urinary organic acids may not be characteristic, we recommend to measure free carnitine and acylcarnitines in plasma in any child with hyperammonemia, hypo/hyperketotic hypoglycemia or lactic acidemia for prompt treatment, proper genetic counseling, and potential prenatal diagnosis.