A large targeted deletion of Hoxb1-Hoxb9 produces a series of single-segment anterior homeotic transformations

Dev Biol. 2000 Jun 1;222(1):71-83. doi: 10.1006/dbio.2000.9683.

Abstract

Hox genes regulate axial regional specification during animal embryonic development and are grouped into four clusters. The mouse HoxB cluster contains 10 genes, Hoxb1 to Hoxb9 and Hoxb13, which are transcribed in the same direction. We have generated a mouse strain with a targeted 90-kb deletion within the HoxB cluster from Hoxb1 to Hoxb9. Surprisingly, heterozygous mice show no detectable abnormalities. Homozygous mutant embryos survive to term and exhibit an ordered series of one-segment anterior homeotic transformations along the cervical and thoracic vertebral column and defects in sternum morphogenesis. Neurofilament staining indicates abnormalities in the IXth cranial nerve. Notably, simultaneous deletion of Hoxb1 to Hoxb9 resulted in the sum of phenotypes of single HoxB gene mutants. Although a higher penetrance is observed, no synergistic or new phenotypes were observed, except for the loss of ventral curvature at the cervicothoracic boundary of the vertebral column. Although Hoxb13, the most 5' gene, is separated from the rest by 70 kb, it has been suggested to be expressed with temporal and spatial colinearity. Here, we show that the expression pattern of Hoxb13 is not affected by the targeted deletion of the other 9 genes. Thus, Hoxb13 expression seems to be independent of the deleted region, suggesting that its expression pattern could be achieved independent of the colinear pattern of the cluster or by a regulatory element located 5' of Hoxb9.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cranial Nerves / embryology
  • Gene Deletion*
  • Genes, Homeobox*
  • Mice
  • Mice, Mutant Strains
  • Multigene Family
  • Phenotype