Protein geranylgeranyltransferase type I (GGTase I) is a heterodimeric zinc metalloenzyme catalyzing protein geranylgeranylation at cysteine residues present in C-terminal signature sequences referred to as CaaX (X=Leu) motifs. We have studied GGTase I as a potential antifungal target and recently reported its purification and cloning from the yeast Candida albicans (Ca GGTase I), an important human pathogen. Here, we report the high yield bacterial expression of Ca GGTase I by coexpression of maltose binding protein fusion proteins of both the alpha (Ram2p) and beta (Cdc43p) subunits. The cleaved and purified recombinant Ca GGTase I was demonstrated to be functional and structurally intact as judged by the presence of one equivalent of a tightly bound zinc atom and the near stoichiometric formation, isolation and catalytic turnover of a geranylgeranyl pyrophosphate-GGTase I complex. Kinetic analysis was performed with a native substrate protein, Candida Cdc42p, which exhibited significant pH dependent substrate inhibition, a feature not observed with other Ca GGTase I substrates. Prenyl acceptor substrate specificity was studied with a series of peptides in which both the CaaX motif, and the sequence preceding it, were varied. The prenyl acceptor K(M)s were found to vary nearly 100-fold, with biotinyl-TRERKKKKKCVIL, modeled after a presumably geranylgeranylated Candida protein, Crl1p (Rho4p), being the optimal substrate. A screen for inhibitors of Ca GGTase I identified compounds showing selectivity for the Candida versus human GGTase I. The most potent and selective compound, L-689230, had an IC(50) of 20 nM and >12,500-fold selectivity for Ca GGTase I. The lack of significant anti-Candida activity for any of these inhibitors is consistent with the recent finding that GGTase I is not required for C. albicans viability [R. Kelly et al., J. Bacteriol. 182 (2000) 704-713].