Role of central glutamate receptors, nitric oxide and soluble guanylyl cyclase in the inhibition by endotoxin of rat gastric acid secretion

Br J Pharmacol. 2000 Jul;130(6):1283-8. doi: 10.1038/sj.bjp.0703436.

Abstract

1. This study examines the role of a central pathway involving glutamate receptors, nitric oxide (NO) and cyclic GMP in the acute inhibitory effects of low doses of peripheral endotoxin on pentagastrin-stimulated acid production. 2. Vagotomy or intracisternal (i.c.) microinjections of the NO-inhibitor, N(G)-nitro-L-arginine methyl esther (L-NAME; 200 microg rat(-1)) restored acid secretory responses in endotoxin (10 microg kg(-1), i.v.)-treated rats. 3. The acid-inhibitory effect of i.v. endotoxin (10 microg kg(-1), i.v.) was prevented by prior i.c. administration of the NMDA receptor antagonists, dizocilpine maleate (MK-801; 10 nmol rat(-1)) and D-2-amino-5-phosphono-valeric acid (AP-5; 20 nmol rat(-1)), or the AMPA/kainate antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX; 10 nmol rat(-1)). However, the competitive metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 20 - 1000 nmol rat(-1)) did not antagonize the effects of endotoxin. 4. I.c. administration of L-glutamate (0.1 nmol rat(-1)) inhibited pentagastrin-stimulated gastric acid secretion. Coadministration with L-NAME (200 microg rat(-1)) prevented the inhibition of gastric acid secretion by the aminoacid. 5. I.c. administration of 1H-[1,2, 4]Oxazodiolo[4,3-a]quinoxalin-1-one (ODQ; 100 nmol rat(-1)), a soluble guanylyl cyclase (sGC) blocker, reversed the hyposecretory effect of endotoxin. 6. I.c. administration of the cyclic GMP analogue 8-Bromoguanosine-3,5-cyclic monophosphate (8-Br-cGMP; 100 - 300 nmol rat(-1)) reduced gastric acid production in a dose-dependent manner. 7. We conclude that central NMDA and AMPA/kainate receptors are involved in the acid inhibitory effect of peripherally administered endotoxin. This central pathway involves synthesis of NO, which acts on the enzyme sGC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Benzoates / pharmacology
  • Cyclic GMP / analogs & derivatives
  • Cyclic GMP / pharmacology
  • Dizocilpine Maleate / pharmacology
  • Dose-Response Relationship, Drug
  • Endotoxins / pharmacology*
  • Enzyme Inhibitors / pharmacology
  • Excitatory Amino Acid Antagonists / pharmacology
  • Gastric Acid / metabolism*
  • Gastric Mucosa / metabolism
  • Glycine / analogs & derivatives
  • Glycine / pharmacology
  • Guanylate Cyclase / antagonists & inhibitors
  • Guanylate Cyclase / physiology*
  • Male
  • NG-Nitroarginine Methyl Ester / pharmacology
  • Nitric Oxide / antagonists & inhibitors
  • Nitric Oxide / physiology*
  • Nitric Oxide Synthase / antagonists & inhibitors
  • Oxadiazoles / pharmacology
  • Pentagastrin / pharmacology
  • Quinoxalines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Glutamate / drug effects
  • Receptors, Glutamate / physiology*
  • Solubility
  • Stomach / drug effects
  • Vagotomy

Substances

  • 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one
  • Benzoates
  • Endotoxins
  • Enzyme Inhibitors
  • Excitatory Amino Acid Antagonists
  • Oxadiazoles
  • Quinoxalines
  • Receptors, Glutamate
  • alpha-methyl-4-carboxyphenylglycine
  • 8-bromocyclic GMP
  • Nitric Oxide
  • FG 9041
  • Dizocilpine Maleate
  • Nitric Oxide Synthase
  • Guanylate Cyclase
  • Pentagastrin
  • Cyclic GMP
  • Glycine
  • NG-Nitroarginine Methyl Ester