Virginiae butanolides (VBs) and IM-2 are members of Streptomyces hormones called 'butyrolactone autoregulators' which regulate the antibiotic production in Streptomyces species at nanomolar concentrations. Cell-free extract of a VB-A overproducer, Streptomyces antibioticus NF-18, is capable of catalyzing the final step of the autoregulator biosynthesis, namely, the NADPH-dependent reduction of 6-dehydroVB-A. However, physico-chemical analyses of the purified enzymatic products revealed that, in addition to the VB-type isomer [(2R,3R,6S)-enantiomer], IM-2-type isomers [(2R,3R, 6R)- and (2S,3S,6S)-enantiomers] were also produced from (+/-)-6-dehydroVB-A, suggesting the existence of several 6-dehydroVB-A reductases with respective stereoselectivities. The reductase activity of the crude extracts was separated into two activity peaks, peak I (major) and peak II (minor), by DEAE-5PW HPLC. Chiral HPLC analyses demonstrated that peak I enzyme and peak II enzyme catalyzed the production of (2R,3R,6S), (2R,3R,6R) and (2S,3S, 6S) isomers at ratios of 46:1:3.2 and 4.9:1:1.5, respectively, indicating clearly that S. antibioticus NF-18 possesses at least two 6-dehydroVB-A reductases: one much favored toward VB-A biosynthesis, the other with relaxed stereoselectivity capable of synthesizing both VB-type and IM-2-type autoregulators.