The survival and apoptosis of eosinophils is of pivotal importance for controlling allergic diseases such as asthma and rhinitis. In this study we have investigated the role for cAMP in regulating eosinophil survival and apoptosis in the absence of eosinophil-active cytokines. The treatment with dibutyryl cyclic AMP (dbcAMP) increased eosinophil survival with a concomitant decrease of apoptosis in a dose-dependent manner. The pretreatment with a protein kinase A (PKA) inhibitor blocked the effects of dbcAMP on survival and apoptosis of eosinophils. The catalytic subunit of PKA was translocated to nucleus in parallel with a robust increase of intracellular cAMP levels upon exposure to dbcAMP but not IL-5, suggesting the separation of PKA activation from the IL-5-induced suppression of eosinophil apoptosis. When eosinophils were treated with pharmacological inhibitors of protein kinases prior to exposure to dbcAMP or IL-5, only the mitogen-activating protein kinase (MAPK) inhibitor, PD098059, was partly able to block dbcAMP-induced augmentation of eosinophil viability, whereas both Janus kinase 2 and MAPK inhibitors effectively interrupted the IL-5-induced prolongation of eosinophil survival. The effects of dbcAMP and these protein kinase inhibitors on eosinophil apoptosis were confirmed by morphologic analysis. We propose that a cAMP-dependent pathway may constitute an important component for regulating eosinophil survival/apoptosisand that cAMP may inhibit eosinophil apoptosis through the activation of PKA and of subsequent MAPK in part.
Copyright 2000 Academic Press.