Given the roles proposed for gap junctional intercellular communication in neuronal differentiation and growth control, we examined the effects of connexin43 (Cx43) expression in a neuroblastoma cell line. A vesicular stomatitis virus G protein (VSVG)-pseudotyped retrovector was engineered to co-express the green fluorescent protein (GFP) and Cx43 in the communication-deficient neuro-2a (N2a) cell line. The 293 GPG packaging cell line was used to produce VSVG-pseudotyped retrovectors coding for GFP, Cx43, or chimeric Cx43.GFP fusion protein. The titer of viral supernatant, as measured by flow cytometry for GFP fluorescence, was approximately 2.0 x 10(7) colony form units (CFU)/ml and was free of replication-competent retroviruses. After a 7-day treatment with retinoic acid (20 microm), N2a transformants (N2a-Cx43 and N2a-Cx43.GFP) maintained the expression of Cx43 and Cx43.GFP. Expression of both constructs resulted in functional coupling, as evidenced by electrophysiological and dye-injection analysis. Suppression of cell growth correlated with expression of both Cx43 or Cx43.GFP and retinoic acid treatment. Based on morphology and immunocytochemistry for neurofilament, no difference was observed in the differentiation of N2a cells compared with cells expressing Cx43 constructs. In conclusion, constitutive expression of Cx43 in N2a cells does not alter retinoic acid-induced neuronal differentiation but does enhance growth inhibition.