Structural hemoglobin (Hb) variants typically are based on a point mutation in a globin gene that produce a single amino acid substitution in a globin chain. Although most are of limited clinical significance, a few important subtypes have been identified with some frequency. Homozygous Hb C and Hb S (sickle cell disease) produce significant clinical manifestations, whereas Hb E and Hb D homozygotes may be mildly symptomatic. Although heterozygotes for these variants are typically asymptomatic, diagnosis may be important for genetic counseling. Thalassemia, in contrast, results from quantitative reductions in globin chain synthesis. Those with diminished beta-globin chains are termed beta-thalassemias, whereas those with decreased alpha-chain production are called alpha-thalassemias. Severity of clinical manifestations in these disorders relates to the amount of globin chain produced and the stability of residual chains present in excess. The thalassemia minor syndromes are characterized clinically by mild anemia with persistent microcytosis. Thalassemia intermedia (i.e., Hb H disease) is typified by a moderate, variably compensated hemolytic anemia that may present with clinical symptoms during a period of physiologic stress such as infection, pregnancy, or surgery. The thalassemia major syndromes produce severe, life-threatening anemia. alpha-Thalassemia major usually is incompatible with extrauterine life; beta-thalassemia major presents in infancy and requires life-long transfusion therapy and/or bone marrow transplantation for successful control of the disease. Double heterozygosity for certain structural variants and/or thalassemia syndromes may also lead to severe clinical disease. Several guidelines have been published that outline the required steps for hemoglobinopathy and thalassemia investigation. The availability of HPLC has streamlined many of these requirements, allowing an efficient stepwise diagnostic strategy for these complex disorders.