Reactive oxygen species (ROS) are important regulatory molecules implicated in the signaling cascade triggered by tumor necrosis factor (TNF)-alpha, although the events through which TNF-alpha induces ROS generation are not yet well characterized. We therefore investigated selected candidates likely to mediate TNF-alpha-induced ROS generation. Consistent with the role of Rac in that process, stable expression of Rac(Asn-17), a dominant negative Rac1 mutant, completely blocked TNF-alpha-induced ROS generation. To understand better the mediators downstream of Rac, we investigated the involvement of cytosolic phospholipase A(2) (cPLA(2)) activation and metabolism of the resultant arachidonic acid (AA) by 5-lipoxygenase (5-LO). TNF-alpha-induced ROS generation was blocked by inhibition of cPLA(2) or 5-LO, but not cyclooxygenase, suggesting that TNF-alpha-induced ROS generation is dependent on synthesis of AA and its subsequent metabolism to leukotrienes. Consistent with that hypothesis, TNF-alpha Rac-dependently stimulated endogenous production of leukotriene B(4) (LTB(4)), while exogenous application of LTB(4) increased levels of ROS. In contrast, application of leukotrienes C(4), D(4), and E(4) or prostaglandin E(2) had little effect. Our findings suggest that LTB(4) production by 5-LO is situated downstream of the Rac-cPLA(2) cascade, and we conclude that Rac, cPLA(2), and LTB(4) play pivotal roles in the ROS-generating cascade triggered by TNF-alpha.